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ABSTRACT

The only explicit exact solution of the problem of steady vortex rings is

that found, for a particular case, by M.J.M. Hill in 1894; it solves a semi-

linear elliptic equation, of order two, involving a Stokes stream function J7(r,z)

and a non-linearity f (4) that has a simple discontinuity at ' - 0.' In "this

paper we prove:tthat (a) any weak solution of the corresponding boundary-value

problem is Hill's solution, modulo translation along the axis of symmetry (r = 0)

(b) any solution of the isoperimetric variational problem in +tT3 is a weak

solution, indeed, any ocal maximizer is a weak solution. The result (b) is not

immediate because f" is discontinuous; consequently, the functional that is

maximized is not Fr6chet differentiable on the whole Hilbert space in question.
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SIGNIFICANCE AND EXPLANATION

A number of existence theorems for steady vortex rings, and some

properties of solutions, have been established in the last 15 years, but

questions of uniqueness, and of any connection between the solutions

resulting from different formulations, have remained very much open.

It has not even been known whether the simple, explicit and celebrated
.4

- solution known as Hill's spherical vortex is among those whose.existence

has been established by modern methods. The present paper settles this

question; since Hill's vortex is shown to be unique, any existence theory

that allows the discontinuous vorticity function in question recovers Hill's

solution.
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1. Introduction

1.1. Background

The mathematical description of steady vortex rings, in an ideal fluid

occupying the whole space ER , can be approached in various ways. The

physical basis of the problem, its history up to 1973, and several formulations

are outlined in (12], pp. 14-21. Another, quite different formulation and the

plan for a corresponding existence theory are presented in [6]. Further

existence theorems, variational principles and results are to be found in [3),

[7], [11], [13) and [20]. Here we state only definitions and equations that

seem relevant to our immediate purpose.

Consider a Stokes stream function Y , defined on the closure i of the

half-plane

H . {(r,z) r > 0 , - z < }

where r and z may be regarded as cylindrical co-ordinates, points of m3

being denoted by X - (X1,X2 ,X3) - (rcosO,rsine,z) . The significance of

T is that (a) the fluid velocity has cylindrical components (in the

directions r,9,z increasing, respectively) -Vz /r, 0, 'r /r ; (b) streamlines

in a meridional plane (e - const.) are level curves of T , and 2r(V2 - T1)

IDepartment of hathematics, University of Chicago, 5734 University Avenue,
Chicago, IL 60637.

2Mathematl s ftvision, University of Sussex, Brighton BN1 9QH, England.
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is the volumetric flow rate, or flux, between two stream surfaces of revolution

described by (rz) - const. - Y (j - 1,2); (c) the vorticity curl q has

cylindrical components 0, -(LY)/r, 0, where

az
2

L r r r(I r) + a

Such a function V corresponds to a steady vortex ring if there exists

a bounded open set A c lI, called the cross-section of the ring and unknown

a priori, such that Y e C (U) n C (fl\aA) and satisfies the equations

ET - r 2 f0 ( ) in A ,
LY r!J + ¥' = IAnf()(1. la)

Ir jr0 inn\i ,

~' A =0 , J 'r~ -k ,(1.1b,c)2 z2 W 2 y/

as r + z in , Y(r,z) ~ - - k , 0 /r - 0

and T /r * -W . (1.1d)

Here f 0  is a given, (strictly) positive vorticity function, which need be defined

only on (0,-) because of (1.2) below. We suppose for the moment that the

vortex-strength parameter A , the flux constant k and the propagation speed W

are also prescribed, with A 0 , k 2 0 and W > 0 . (The constant W is the

speed of the vortex ring relative to the fluid at infinity; in (1.1) we have

taken co-ordinate axes fixed in the ring and have demanded that the fluid velocity

q - (0,0,-W) at infinity.) In most existence theorems, other sets of constants

are prescribed, and 'free' elements of the set {X,k,W} are calculated a posteriori.

This is illustrated by the remarks following (1.8) below.

Since LY < 0 In A and 7'aA = 0 , the maximum principle implies that

V > 0 in A ; similarly, V < 0 in f\A . Therefore we define the cross-

section by

A - {(r,z)eI T (r,z) > 0) . (1.2)

-2-



It is often convenient to write

Y(r,z) - V(r,z) - hWr2 - k , (1.3)

where * is the stream function due to vorticity, while -hWr - k represents

a uniform stream. Note that the latter has zero vorticity: L(hWr 2 + k) - 0

We define

0O, t O - ,

f(t) -

If0(t) , t > 0 .

Abbreviating the conditions at infinity, we now re-write (1.1) as

LI - - Xr2 f() in 11 , (1.4a)

*lr.O - 0 , (r,z) - 0 as r 2 + Z2 * in ( , (1.4b,c)

where it is to be understood that (1.4a) need not hold pointwise on 3A, and

that *z /r and 4r /r - 0 at infinity. Maximum principles for weak solutions

show that .> 0 in U .

1.2. Bill's spherical vortex

Only one explicit exact solution of (1.1) or (1.4) is known: that discovered

by N.J.H. Hill [17) in 1894 for the case

0, t O !5 ,

k - 0 and f(t) - f,(t) {-- :1 (1.5)

Hill observed that for this case a sphere {X c R 3I lix = a) can serve as the

boundary of a steady vortex 'ring' (Figure 1). Thus the cross-section is

% {(r,z)cf1 I r2 + z2 < a 2 , (1.6a)

and we let P - (r 2 + z 2 H ill found the solution

-3-
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2 2a,

* (r,z) S T. (r,z) + 2Wr2  a (1.6b)

P

where Xa2/W - 15/2 . (1.6c)

Anticipating the definition (1.7), we note that, for a fluid of unit density,

the kinetic energy wl *, 112 is given by

112 J _ 2 + 22,z) rdrdz _ 2 a3  (1.6d)II ~ ~ 2s %I - ,r H - 7 2a

By Hill's problem we mean (1.1) or (1.4) for the case k - 0 , f - f= "

Solutions of Hill's problem are presented (among other solutions) in [12)

and (13), but no uniqueness theorem appears in these papers, and it has been

unknown whether these solutions of Hill's problem are in fact Hill's solution.

Indeed, we know of no result in the literature that connects in any way the many

solutions, of the basic general problem (1.1), that have been obtained by

different formulations and different existence theorems.

1.3. Results

In the present paper we prove that, for Hill's problem, (a) any weak solution

is Hill's solution *S , modulo translation in the z-direction; (b) any solution

of the isoperimetric variational problem formulated in [12) is a weak solution,

indeed, any local maximizer is a weak solution (and is therefore Hill's solution).

The result (b) is not obvious or immediate, because fH has a simple discontinuity;

consequently, the functional that we maximize is not Fr~chet differentiable on the

whole Hilbert space appropriate to the problem.

We now make these statements precise. The Hilbert space H () is the

completion of the set C7 (fl , of real-valued functions having derivatives of

every order and compact support in I, in the norm II Ii corresponding to the

-5-
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inner product

<,x> (X, + x) rdrdz . (1.7)

Thus vI 1 12 is the kinetic energy of the motion with stream function *
also,

<X -! - LX rdrdz if *,X C C(1)

We shall say that * is a weak solution of Hill's problem if Ve H() \ {01

and if there exist constants X e R and W > 0 such that

<A,> a A 0 rdrdz for all c H(I),

where A(*) = {(r,z)efl I *(r,z) > hWr } .2

Setting * - V in (1.8), one sees that A > 0 and that A(*) must have positive

area. (For Theorem 1.2, we shall prescribe II V II > 0 and w > 0 ; then

/11* * rdrdz.) Our first result is

S

THEOREM 1.1. if * is a weak solution of Hill's problem, then

V(r,z) = V(r,z-c) for some c e ; here V% is as in (1.6).

We now turn to the variational principle in [12). To state it for Hill's

problem, we define

t+ .e = max{tO,

J() J (.(r,z) - 'Wr2 ) + rdrdz for all C H(11)

S(n) = { (fn) III # i12 
= > 01

the sphere s(n) is a surface of constant energy. The variational problem is:

-6-
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given V and n, find c' 8(n) such that J(O) , maX 8Cn) J (0) For

the sake of a wide uniqueness statement, we consider not only solutions of this

problem, but also local maximizers of J on S(W) ; we shall prove

THEOREM 1.2. Let * be a local maximizer of J on S(n): that is,

J(0) < J(4) for all 4 e S(N) in some neighbourhood of * . Then 4 is a

weak solution of Hill's problem (so that Theorem 1.1 applies).

1.4. Method

The principal steps in the paper are as follows.

2
(i) We make the transformation * - r v in order to prove that, when * is

a weak solution of Hill's problem, v depends only on p - {r2 + (z-c)2 1 for

some c e IR (and on the parameters). The resulting one-dimensional problem

for v can then be analysed without difficulty. It is a fortunate and crucial

fact that

- v * - r v ) + v - A v for r > 0 (1.9)
2 3 r r zz 5

r r

5
where v(r,z) is now regarded as cylindrically symmetric in 3R , that is,

r- (x2 +...+ x) and z - 5  while A5 . 1 2/a.2 is the Laplace operator

in R. The identity (1.9) was noted by Chandrasekhar ([9), p.252) , and has been

used by Ni [20) to prove regularity in his theory of steady vortex rings. However,

Ni considered only non-linearities f smoother than f , so that Hill's vortex
2

is outside the range of his theory. The transformation -- r v is exceptionally

useful for Hill's problem because the equivalence, for r > 0 , of the conditions

4' tor2 and v > W means that (1.4) becomes

A5 v - Xf Hv - W) in i \{r = 0} , (1.10a)

vx) 0 as lxi- (1.lOb)

-7-
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In Cartesian co-ordinates xI ,..., x5 , equation (1.10a) has constant

coefficients on both sides, and this allows us to prove, in step (ii), that v

depends only on p . For k 0 0 or f # fH , the right-hand member of (1.4a)

does not transform to a function independent of r .

(ii) To prove that the weak form of (1.10) implies spherical symmetry

of the function v, we first transform (in section 2) the definition (1.8)

of weak solution, showing at the same time that the exceptional line {r = 01

causes no difficulty. In section 3, we establish regularity properties and

positivity of the weak solution v, and then adapt to the present problem

the ptwerful method initiated by Serrin in [24] and greatly enlarged by Gidas,

Ni and Nirenberg in [14]. A slight, further extension is needed here because

C2 solutions are considered in [24) and [14), whereas for Hill's vortex second

derivatives have a finite jump across 3 . The generalized maximum principles

in Gilbarg and Trudinger's book [15) enable us to modify the relevant parts of

[14).

Different applications of the method in [24) and [14), to free-boundary

problems of the same general kind as Hill's problem, have already been made in

[8), [11] and [18).

(iii) To prove Theorem 1.2, we transform ( in section 2) the variational

principle for * to one for v . In section 4, we overcome the difficulty,

that the convex functional N corresponding to J is not Fr~chet differentiable

on its whole domain, by using convex analysis. Detailed examination of the

subdifferential of N , and of its left-hand and right-hand Gateaux derivatives,

leads to the result.

1.5. Miscellaneous remarks

(i) The excistence of a global maximizer, of J over the sphere S(n)

is not in doubt: such a function is constructed in [12], pp. 40-42 (although

rather indirectly, by limiting procedures) and that particular function is

.-.-



easily seen to be a weak solution, for any k a 0 and for a class of non-

linearities f that includes fH For Hill's problem, one can also prove

2
more directly, by means of the transformation * = r v and symmetrisation

with respect to a point in 3R5  (that is, by re-arrangement of v to a

spherically symmetric function v*) that a global maximizer exists and is a

weak solution. However, maximizers other than these are conceivable; it is

for this reason, and to demonstrate the strength of the variational principle,

that we present Theorem 1.2.

(ii) There is a variant of Hill's solution (not published, we believe,

but well known to specialists) in which the fluid domain is a ball, say

{X C t 3I lXI < b) , with cross-section D = {(r,z)! I r2 + z2 < b 2 } . We

set k = 0 , f - fH as before; replace f1 by D in (1.la) and (1.4a);

and replace the condition (1.ld) or (1.4c) at infinity by

'(r,z) - Wr2  on aD, (1.11)

which states that the normal, velocity on aD is the normal component of

(0,0,-W) , and also implies the conditions (1.lc) and (1.4b) on r = 0 for

this problem.

After extending in Appendix A the relevant theorem in [141, we show in

Appendix B that the earlier results and methods carry over to this case with

only minor changes. One of these is that, while transformed solutions v are

always spherically symmetric, existence and uniqueness depend on what constants

are given. If X, W and b are prescribed, there may be no solution or there

may be two; if II, W and b are prescribed, the solution always exists

and is unique.

(iii) In [223, Norbury constructed perturbations of Hill's solution that

represent genuine rings (homeomorphic to a solid torus). He solved (1.1) with

f fH and 0 < k < k0 , where k0 is small, by reducing an integral equation

to a contraction mapping of a small closed ball, in a Banach space of functions

-9-
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LEMMA 3.7. Assume that for some u > 0 we have v(x) 2 v(x) for all

x E Y(u) , and v(x ) 0 v(x U) for some x0 e Y(U) Theno1 0 0

(a) v(x) > v(xU) for all x f Y(j) , (3.12)
3v

(b) - (x) < 0 for all XCT U (3.13)

Proof. (a) We define the reflection in T of any function F by

F (x) - F(x ) 
, and set w - v - v . By hypothesis, w(x) S 0 for x c Y(u)

and we prove strict inequality by means of (3.1) and the maximum principle.

Let Y ~Y() and Z - Z(M) Given 0 E C0 (Y) , we note that 0 has

support in Z , and choose u = U in (3.1) to obtain

z V (z ) - Vv (z ) d z  = A fznP(v) U (z) dz .

Set z - x U in this equation; then x e Y , 3/az I  - /ax I and a/3z /ax

for j - 2,...,5 Also, U (Z) - *Cz U #(x) and vz) - vx U v Cx)

Consequently,

J 74(x).Vv (x) dx - A Jn #(x) dx . (3.14)

Now choose u - * in (3.1), and subtract the resulting equation from (3.14) to

obtain

y ynP (v ) YnP (v)

Since v(x) > jW for x £ P(v) , while v(xVI) > aW for x e P(v U , our

hypothesis implies that Y A P(v) contains Y n P(v U ) hence

J 5 0 for all 0 f CCY) with z 0
Y

As it happens, we can now apply Theorem 3.4(a) to all of Y, because (3.10)

shows that v LOR 5 then w e C(Y) A W2 (Y) , by Lemma 3.1, and so Aw Z 0

-23-
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Prospectus. It is easy to see that the function v0 , defined by (3.9),

satisfies (3.1)1 our aim is to prove that vOx) = v(xlx 5) . Having

emphasized this, we shall omit the subscript 0 from v0 , restoring it only

in the statement of our final result.

Lemmas 3.5, 3.6 and 3.8 below are merely statements for our case of

Lemmas 4.1, 4.2 and 4.4 in [14). We include these statements for the sake

of clarity, but, apart from offering in Appendix C an alternative proof of

Lem 4.1 in [14), we refer to [14) for proofs of these results. The first

part of the proof of Theorem 3.9 is also to be found in [14), but we include

it as an essential part of the present story.

Reflecting hyperplanes. Let y be a fixed unit vector in IR . For

each Ue It, define T (y) = {x IR5 ixy = 1 . we may suppose that, after

a suitable rotation of axes, Y = (1,0,...,0) ; then

T {xx 1  = ul ; (3.11a)

also,

x = (2p - x1 , x) , where x" = (x 2 ,... x5 ) , (3.11b)

denotes the reflection in T of any point x . We define open half-spaces by

Y(p) = {xjx1 < v} and Z() - {xjx1 > U)

LEMMA 3.5. Let v be as in (3.10), and consider two points y and

such that y1 < z1 , yl + z1  2v > 0 and y-l = z" There exists a number

R(u) , depending only on v and min{1,p) , such that

v(y) > v(z) whenever ly - R(p)

LEMMA 3.6. There exists a number 0 I such that

v(x) > v(x ) whenever x c Y() and 1 0

-22-
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where the synmetric n ' n matrix a(x) is uniformly positive definite:

-aCx)-C c 0 1C2 , co _ const. > , for all , n  and x e SI

Ithe entries a of a are in %1 (0) , the components pl'"'Pn of p are

in L, (0) , and q cL (0i) . Given a connected open (possibly unbounded) set

1c1 , we say that Lu k 0 weakly in G if u c C() n W(G) and

A(#,uj) - - VO.a(x).Vu + *p(x).Vu + *q(x)u) dx > 0

for all * C C0(G) with # Z 0

THEOM 3.4. (a) Ler G c 0 be connected and open. If Lu 2 0 weakly

in G and u g 0 in G, then either u E 0 or u < 0 in G .

(b) Let B c f be a ball, let x0 e 3B and let m0  be a unit vector

outward from B at x0. (That is, m0 (xo- c) > 0, where c is the centre

of B .) If Lu k 0 weakly in B, u < 0 in B, and u(x0 ) = 0, then

m inf~~ Ux 0 - u(x 0 - tM0 ) >Snfx+ t

which implies that mo* (Vu) (x0 ) > 0 when this derivative exists.

Proof. (a) follows from Theorem 8.19 of [15) s (b) follows from the

proof of Lema 3.4 and (3.11) in (15) when the classical maximum principle used

there is replaced by (a). The restriction q : 0 in 0 , imposed in [153, is

not necessary for the particular conclusions in (a) and (b), because we can use

a perturbation of our operator L that satisfies this restriction: if

A(#,u;G) Z 0 and u f 0 in G , then

J ( •a(x) -Vu +#p(x)•Vu + #q_(x)uldx - A($,u;G) - J q+(x)udx 0

for all # c C0 (G) with 0 Q.e.d.

-21-
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Remark. Following the procedure in (14), we now eliminate the dipole

terms in (3.8) by defining (for all x e m5

v0(x) v(x + b) , where bj = a /3a (j = 1,...,5) . (3.9)

Then

Vo(x) a0 IxI-3 + g(x) , a0 > 0,

(3.10)

Ig(x) s const.Ixl I, Ivg(x) S const. lxI -6 , for lxI Z 2R v+ I

3.2. The maximum principle and reflecting hyperplanes

We note that v is a Newtonian potential with an unusual property:

v(x) is constant on the boundary 3P (v) of the set in which the density differs

from zero. This is the underlying reason that P(v) will turn out to be a ball,

with v spherically symmetric about its centre (cf. (24)).

The method in [24) and (14) depends on moving hyperplanes in from infinity,

reflecting the graph of a function about these hyperplanes, and then using the

maximum principle. For positive solutions v of certain elliptic problems set

in .n, the arguments in [143 are of two types: (a) those which depend only on

approximations to v(x) for large lxi , and (b) those which apply the maximum

principle to classical solutions. Our result (3.8) is sufficient for (a), but

we shall have to use (3.1) and a generalized maximum principle in place of (b).

The following maximum principle is far more general than is needed in this

section, somewhat more general than is needed in Appendix A, and considerably

less general than results in [15). We state this particular theorem because it

is close to the Maximum Principle and Lemma H on p.212 of [14]1 thus it shows

the feasibility of extending results in [14) to weak solutions of problems other

than ours.

n 2Let 9 be an open set in mn. Define, for x e 0 and (say) u e C (S),

Lu S V.{ax).Vul + p(x).Vu + q(x)u,

-20-
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- AJ n (y -x) v (y) dy f (VJ Kn N - y) dy. (3.7)

Now - AK is a mollifying kernel: AK (z) - 0 for jzj > 1/n, andsn n

S5(0, 1/n) n 1 1(0,1/n)

where the constant is independent of n. Since v 4 C( ) , the left-hand

smber of (3.7) tends (pointwise) to v(x) as n 4 * In addition,

J1 n-2
IK (z) - K (Z) Id z < n ,-

5 6

so that the right-hand member of (3.7) tends to the right-hand member

of (3.6) as n 4  
. Q.e.d.

LZMMA 3.3. Let R be as in Lemma 3.1(d). There exist constants- V

a. > 0 and a (j - 1,...,5) such that

3 5.

vx) - a 0 x1 3 + a a xjxl"  + h(x)
j1

(3.8)

Ih(x)I S const. x "5, IVh(x)Il ! const.x -6, J for jxj 2 2R

In fact,

0 IP(v) I a a _ yj dy (J = 1,...,5)

sov ' SW2 5 W2 Jp(

but these details will not be needed.

Proof. in (3.6), with lyl < aIxl for all y c P(v) , we may differentiate

repeatedly under the integral sign (once is sufficient here) and expand ly - x-3

and its derivatives, essentially in powers of lyl/Ixi , to finitely many terms

with a remainder. Q.e.d.

-19-
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C ' (iO) , and this shows that v~x) -* as Ix0 a

C5
(c) Since v is continuous in R, the set P(v) is open. Since

V C W 2  c() , we infer from (3.1) that
p , boc

JP M(AV + A) = 0 for all 0 e C(PvM

hence - Av - A almost everywhere in P(v) . But the qualification 'almost

everywhere' can be removed by means of further regularity theory, or by means

of (3.6) below; in fact, v is real-analytic in P(v) . The argument is

similar for the set in which v(x) < W .

(d) This follows from (b) and the definition of P(v) Q.e.d.

LEMM 3.2. The function v is the Newtonian potential of P (v) with

density X.

v x) - - I ly- x1-3 dy for all x e R . (3.6)

5
It follows that v > 0 in IR

Proof. We choose the test function u in (3.1) to be a smooth

approximation to the Newtonian kernel in M5. Let p be a non-decreasing

function in C7 O - 3R) such that p(t) = 0 for t : and u(t) - 1 for

t > 1 , and define, for all z e 3R5  and any positive integer n ,

K = (z) 1 -3 , K (z) = pnz)z)
82I n

We choose and fix any x e I , and replace the variable of integration in
(3.1) by y . Then Kn (-X) L E ; we set u(y) - K n(y-x) in (3.1), and

integrate the left-hand member by parts (first over a large ball (0,R)

the boundary integral is at most maxlyl,.R Iv(y)I and tends to zero as

R-, by Lemma 3.1(b)). Thus

-18-
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XIP(v) n 9 111 and •+-L 1.5 p p,

For any xo i I5 and for j - 0,...,3, let B a B(x0 ,R ) with

Ito-%, R 1 -1, R2 - f and R3 -2 . (These choices of R, and the

inequalities (3.3) to (3.5), are dimensionally consistent in the physicist's

sense only if we use non-dimensional variables, for example, if R is

replaced by R 0 /W" and v by v/W.) A first application of Agmon's

theorem, with p - 10/3, yields

11 v 112,10/3,8 1 ! k 3 {M3 (x 0 ) + II v 110,10/3,8 2 (3.3a)

where

N 1xO) - XIPlv) n 31 3/0 (3.3b)

and where k is an absolute constant. Since W/2 (B is embedded in the
3 10 /1 3 B 1)

space C(D1 ) , a fortiori in L P (B) for all p 2 1 , a second application of

Agmon' s theorem gives

liv 112,po 0 k2 (p)M2 (x0 ,p) + kI(P){K3 (x0 ) + 11 v 110,10/3,B 2  for all p c (1,-)

(3.4a)

where

N lx0,P )  0. xlP(v) n B2  I/p (3.4b)

Finally, embedding theory gives

iv 11C1 0 s k0 (p,a) 1 v "12,p,80  for p(i - a) > 5 (3.5)

the constants k depend only on p (n - 1,2) or on p and a (n - 0)n

To obtain bounds independent of x0 , we merely replace IP(v) n B l5 by

IDB15 and the norm of v in L10/3(D 2 ) by that in L (0/3OR5)

(b) Lemma 2.1 shows that the norm of v in L10/3 (5 \8(0,m)) , and

IP(v)\8(0,m) l5 both tend to zero as m - - Hence the right-hand member of

(3.4a) tends to zero as 1X01 " so, therefore, does the norm of v in

-17-
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IP(v) 5 > 0 . It is to be understood throughout section 3 that v A and

W have these properties.

Notation. We define balls to be open and of positive, finite radius;

5(c,R) will denote the ball with centre c and radius R in the space

implied by the context. The non-negative and non-positive parts of a real-

valued function are defined, respectively, by

+x) = max{g(x) ,0) , g_(x) - min{g(x) ,0 (3.2)

note that, in contrast to the convention in integration theory, the non-positive

part is non-positive. Since sections 3 and 4 concern only statements (I) and

(II), we can safely ignore two previous conventions: the A5 in (1.9) now

becomes A , and (as is usual) # will be used for smooth test functions rather

than for elements of H (11)

LEMMA 3.1. (a) v E W2  OR5 ) n c + OR5) for all p c (1,-) and

a C (0, 1)

(b) v(x) - 0 (pointwise) as lxi

{ in P (v),
(c) - Avx) 0in {x 4 5 iv(x) < lW})

(d) There exists a number Rv  such that Pv) c S(0,R v) in R5

Proof. (a) We use Agmon's L approach to the Dirichlet problem,p
applying Theorem 6.1 of [1] to the operator A . The hypotheses of that

theorem are amply satisfied, because v e L 10/3ORS) and because (3.1) implies

that, for any ball B in R5 and any p e (1,)

'J a ~ p~~I: 1  4110 11 Mu .11 for all* e C;(a)B P Cv) AB I.p0

where

-16-
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the first integral vanishes because v e E€ , and the second vanishes by (2.4)

and Lemma 2.3. Q.e.d.

2.3. Transformation of the variational principle

Given W > 0, we define

N(u) i- --.L 5(u- W) dx--2W u (u-V) dx for all u E, (2.8)
2-f235 +2w 2 Jp(u)

S = {u C E cI u11u112 _ n > O} (2.9)

Under the isomorphism in Lemma 2.2, the variational problem stated before

Theorem 1.2 becomes: given W and n , find v c S (n) such thatC

N(v) - max ueS N N(u) . Thus we have

THEOREM 2.5. Theorem 1.2 is equivalent to the following statement.

(11) Let v be a local maximizer of N on S (n) • Then v is a

transformed weak solution of Hill's problemj that is, there exists X e IR

such that (2.7) holds.

3. Transformed weak solutions correspond to Hill's vortex

3.1. Preliminary estimates

Here and in section 3.2, we prove the truth of statement (I) in Theorem

2.4. In fact, we prove a little more: that, if the hypothesis v e E inc

(1) is weakened to v c E , then the conclusion still holds, provided that

v(Ix'l,x5 -c) , for some c c It, is replaced by vH(Ix'-b'I,x5-b) for

5some b c 3R. Thus our hypothesis is: there exist v e E\{01 , I 3

and W > 0 such that

J Vu.Vv dx = A u dx for all u e E , (3.1)
5~P (v)

where P(v) is as in (2.2). Setting u - v, we see that X > 0 and

-15-
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. .7 - n +

U'W E 2w2  3 '

S

- I ( rM(w,r) + u0,zM(w ! )) r 3drdz - 0

Since IIIulll - Ilu011l :S Illulll for all u e CO( R 5 , we extend M by

continuity to have domain E I then the result <Mu, w - =i*•E - 0 extends to

all u,w e E , so that X and I - M (where I denotes the identity operator

on E) are respectively the projection operators of E onto N and ontoc

2 . Equation (2.5) now follows from the boundc

J uF dxj Mu dx1 :5 cIIIMuII IFI 7/10  for all u eE
l( I( lF

implied by (2.3), and from the fact that Mw - 0 whenever w e El  Q.e.d.

We are now in a position to state our first objective in terms of functions

in E

THEOREM 2.4. Theorem 1.1 is equivalent to the following statement.

(I) If there exist v e E \{0} , X eR and W > 0 such thatc

J 5 Vu.Vv dx = A ( u dx for all u C E, (2.7)
5~P (v)

where P(v) is as in (2.2), then v(x) = v (1xI , x5 -c) for some c e 3.

Here v Hr,z) = * H (r,z)/r 2 and *H  is as in (1.6).

Proof. For any u e E , we use the decomposition u -u 0 + uI , where
u 0 0

u0 E and u I E Let (10)denote the variant of statement (I) that

results from replacing u c E by u0 C Ec in (2.7). Lemma 2.2 shows that

Theorem 1.1 and (I0) are equivalent. Moreover, (10 ) and (I) are equivalent

because

I ui.Vv = 0 and A ul = 0 for all u e E ;
4P(v)

-14-



For any u 6 C0 ,cm) and any positive integer n, define un e R 5  by

u n (r.z) - u(nr)u(rz) A calculation shows that II1u - unlll 5 cot, n-.

where the constant depends on u but not on n ; thus Cd R 5 ) is dense in

70 C (R ) under the norm 1111, and hence in Ec

Nowlet - r2u and x rw 0 where # and X are in C0(l) or,

equivalently, u and w are in C7d R 5 ) . From (1.7) and (2.1) we find that

'X> 0= (r3(urwr + uzw z ) + 2(r 2uw) rdrdz - <uw> E

" since the integral of 2(r 2UW) r vanishes. Q.e.d.

LEMA 2.3. Let F be a figure of revolution having finite measure:

< Let EI denote the orthogonal complement in Z of E Then

dx- 0 forall wcE (2.5)
F c

Proof. Any u e C OR5) has values u(r,&,z) , where f £ S ; we

define a mean-value operator N by

(Mu) (r,z) = 2.. J u(r,E,z) dw,

where dw & denotes the element of surface area at , and decompose u as

follows:

u ,,u0 + u where u0 - Mu, u u - u-Mu . (2.6)

Then u0 E c , Mu 1 - 0 and uI(r, ,z) - O(r) as r - 0 . We now show that

u0,wl = 0 for all uw COR hence (2.6) corresponds, for such

functions, to the unique orthogonal decomposition E E c * 2 . Differentiatingc c

the equation Nof 0 , we obtain M(wIr) - (MWIr 0 0 and M(wlI z) 0.

Consequently,

-13-
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u 11mCIpO - {X11 JQJ fnDlulp} /

Note that I1 I0,p, denotes the norm of L (W)

2.2. Transformation of weak solutions

We begin with three simple lemmas that establish basic properties of

functions in E .

LEMMA 2.1. (a) The space E is embedded in L10/ 3(OR5 ) , and

I IIIIII , where C1  fr l(.I,u11 0,10/3,3t5 ,5 c T -,, for all u, E .E 2.3)

(b) With P(u) as in (2.2),

IP(u) 15 S c 2 W
-10/3 I1,1110/3, where c 2 = (2cI) 10/3, for all u e E . (2.4)

Proof. The first inequality is a standard result of Sobolev embedding

([21), p.128), combined with the inequality between the geometric mean and the

root mean square. The second inequality then follows from

J u10 /3 dx _ (W) 10/3 P(u) 5 .. e.d.
fP(u) Pu1

LEMMA 2.2. The spaces H(I1) and Ec are isometrically isomorphic under
2

the transformation =r u of any i c H() or u e E
___ c

Proof. Let C ( 5) denote the set of functions in Cm 5) that haved e0.c

support disjoint from the z-axis (here r i lxi and z = x 5) . First we show

that C R 5) is dense in E Let p be a non-decreasing function in
d c

C(mR IR) such that li(t) = 0 for t S while u(t) = I for t I 1

-12-
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will be called a figure of revolution, or cylindrically syimetric set, with

cross-section X. The subscript c, attached to the symbol for a set of

functions, denotes the subset of cylindrically symetric functions; that is,

of functions u such that uWx) - u(Cx'l,x 5) for all x in the cylindrically

symmetric domain of u We shall sometimes write u for Z . The closed

linear subspace of E , formed by completing ict5 ) in the norm I1

will be denoted by Ec
2

By the transformation * . r u we mean that, given 0 e H(I1) , we define

u : M \{x' 0- (I by ul - #(IX',x 5 )/IxII , or that, given u e Ec

with u~x) (Ixix 5 ) , we define : If R 3 by *(r,z) - r2u(r,z).

3
Since M does not occur in this statement, we now write r - lx z - x 5
with no danger of confusion. Note that

<uw> - + (uw u r3drdz if u,w E , (2.1)
'E (Urr zz

because the three-dimensional unit sphere S3 - {y C i 41y I} 1) has area 2172

Given a constant W > 0 , we define

P(u) = {x e 51 u(x) > W} for any u e B . (2.2)

Of course, the elements of E are really equivalence classes (of functions equal

almost everywhere), and the precise form of P(u) depends on the representative

u selected from an equivalence class Eu) e R , but different representatives

only change P(u) by sets of (five-dimensional Lebesgue) measure zero. If
2

U e B and - r u , then P(u) is the figure of revolution with cross-sectionc

A(#) [cf. (1.B).

For sets, .lin denotes n-dimensional Lebesue measure.

For any open set 0 C ,n, Wm(n) denotes the Sobolev space of functions
p

having generalized derivatives up to order m in L () , p ' I I its normp

will be written

-11-
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capable of representing the unknown boundary BA We shall prove in [4) that

Norbury's solutions are also unique for sufficiently small (positive) values of

k . This is not trivial because, in Norbury's Banach space, the closed ball

forming the domain of his contraction mapping necessarily has a radius that

tends to zero as k - 0 Thus, for small k > 0 , there could exist solutions

close to Hill's solution that are outside the range of the local uniqueness

result in [22). It is reassuring that, in fact, a single branch of solutions

emerges from Hill's solution as the parameter k increases from zero.

Norbury's numerical calculations [23) suggest that this branch is defined for

all k > 0 , and represents rings of small cross-section as k *

(iv) A small third contribution, in our endeavour to unify the diverse

theories of steady vortex rings, will be presented in [5]. There we consider
8

(1.1) with k - 0 and the power-law vorticity function f0 (t) - t

B - const. - (0,5) , and prove that for these cases the solutions in [12)

coincide with those found by a wholly different variational principle in [13).

This is not a uniqueness result, but merely a proof of the equivalence of two

different methods.

2. The transformed problem

2.1. Further notation and terminology

We define the Hilbert space E to be the completion of the set C0 OR5

in the norm III III corresponding to the inner product

E 22 5 2 2  5

abbreviations as in the last expression will be used where no confusion can arise.

Any set of the form

F i x IR5 i(x,,x 5) X c , where x' (xI .... x4)

-10-
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weakly in Y . Since w 1 0 in Y , by hypothesis, we conclude that w < 0

in Y (The appeal to (3.10) is not necessary. The set X {x e Ylw(x) - 0)

is closed in Y because w is continuous, and open in Y by application of

Theorem 3.4(a) to a small ball about any zero of w in Y . Therefore X 0

or X - Y , and the latter is contrary to hypothesis.)

(b) For any x0 £ T and any R > 0 , define B - 8((x0 ,1 - R, x-), R)

so that B c Y and 3B n T = {x0 1 . Then w < 0 in B , and w(x0 ) - 0

by Theorem 3.4(b) , (Bw/x ) (x,) >0, since Lemma 3.1(a) ensures that this

derivative exists. Finally, (aw/Dx I (x0) = - 2(av/3x 1)(x0 ) . Q.e.d.

LEMMA 3.8. The set {i > 01v(x) > v(x ) for all x c Y()} is open in

3R .

THEOREM 3.9. Let v,X and W be as in (3.1) , and v0  as in (3.9).

2
Then v0x) = v xx) , where vH(r,z) = *(r,z)/r and H is as in (1.6).

Proof. Only v0  is discussed in this proof; we continue to abbreviate

v0  to v . Let (m,-) , with m 0 , be the maximal open interval such that

(3.12) and (3.13) hold whenever )j 4 (m,-) That such an interval exists

follows from Lemma 3.6 and the fact that (3.12) implies (3.13). If m > 0

mthen by continuity v(x) v(x ) for all x c Y(m) , and by Lemma 3.5 there

exist points x0 E Y(m) such that v(x ) v O ) . Hence Lemma 3.7 is
00 0O

applicable and shows that (3.12) and (3.13) hold for u -e m ; by Lemma 3.8,

(m,-) is not maximal. We conclude that m = 0 , whence v(-xl5x") a v(xlx-)q1

whenever x1 a 0 Repeating the argument for the unit vector y - (-1,0,...'0)

we see that v is an even function of x _ . Also, (Ov/axI) (x) < 0 whenever

x1 > 0 , because (3.13) holds for all p > 0 . The same argument holds for

5every unit vector y in R ;therefore, v depends only on lxI and is

strictly decreasing as lxi increases.

-24-
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it follows that P(v) = 8(O,a) for some a 0 . Let jxi = 0 and

v(x) - 4(p) ; from Lemma 3.1 we infer that 4 c C 1[0,) , that V is real-

analytic in [O,a) and (a,-) , and that

I d 4for 0 pa,

4 tp 0 for p >a,

(a) - W, (p)"0 as P*..

This problem can be solved explicitly and easily, the solution corresponds

to (1.6b) and (1.6c). (In fact, we can reach this conclusion with lesr a priori

knowledge of V ; once spherical symetry is established, the maximum principle

ensures that P(v) must be a ball about the origin, otherwise ; would have a

local minimum.) Q.e.d.

4. Local maximizers of N on S ()

In this section, recalling that

N(u) - -- (u - 2W)+ dx - i-1  (u - 'W) dx for all u c E,

we prove statement (II) in Theorem 2.5: that a local maximizer of N on the

sphere S c(n) in Ec  is a weak solution in the sense of (2.7). If we widen

the question by considering N on the corresponding sphere, say E(n) , in E

then the same analysis shows that a local maximizer of N on E(n) is a weak

solution in the sense of (3.1). However, it is not obvious that a local

maximizer on S cr) (arising from Hill's problem set in 1) is a local maximizer

on the bigger sphere EN() , and it does not seem worth while to pursue this point.

The functional N is not Gateaux differentiable, let alone Frdchet

differentiable, at all points of the space E (see the remark following Lemma

4.2 below). Hence it is not obvious that any local maximizer of N on S c W
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is a weak solution, and (as was mentioned in (iii) of section 1.4) we use convex

analysis to prove this result. However, convex analysis is not needed for the

global maximizers described in (i) of section 1.5; in particular, the method

of spherical re-arrangement (which conserves N(v) and does not increase jItvIII)

leads directly to a weak solution of Hill's problem.

Before coming to the statement (II), we derive relevant properties of the

functional N, and these are established without restricting N to Ec

LEPOA 4.1. The functional N is convex, bounded by

0 : N(u) 5 const. -7 /3 W iiul 10/3 for all u e E, (4.1)

and locally Lipschitz continuous:

(I(u) -N(w) 1 5 const. R Iu-w for all u,w C S(0,R) in E. (4.2)

Here the constants are independent of u, w, W and R

Proof. The convexity of N follows from that of the function (

for t e [0,11

N((1-t) u + tw) = - J {(1-t) (u-%W) + t(w- W)}

2w2  5 {(1-t) (u-W) + t(w-W)+}

= (1- t) N(u) + tN(w)

The bound (4.1) results from H51der's inequality and (2.3), (2.4). Lipschitz

continuity of bounded convex functionals is a standard result (110], pp. 12-13;

[16), pp. 110, 113), but it seems worth while to give the short proof of (4.2).

Let h = liw-uIl > 0 and q = w + R(w-u)/h Then

-26-
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Ip

Sh R _ h

.hw = j q R u 3 N (w) : - N (q) + - N (u)
-hq + R+h R+h R~h

by convexity, and q ra5(0,2R) . Accordingly,

N(w) - N(u) !; h N(q) - Nl (u) L Nlq) I const. h W-7/ 3 R7/ 3 ,
R+h hR

". by (4.1). We obtain a similar inequality by interchanging w and u, and

(4.2) follows. Q.e.d.

At any point v e E , the right-hand Gateaux derivative of N in the

direction u is defined by

N~v~u = im0 N(V+tu) - N (v)
W t-,o+ t u e*E I

the left-hand derivative N (v) u is defined similarly with t * 0- . It is

to be expected from Lema 4.1, and is true ([16), p.1l1), that these limits

exist for all v and u in -, that N"(v)u-- N'.(v) (-u) and that N+(v)

is a sublinear functional on E . We now calculate these one-sided derivatives.

-LERA 4.2. At any v e E we have, respectively,

2
2-K Nlv)lu - u(x)dx + ulxldx for all u c E

- P(v) 1X(v)

where P(v) is as in (2.2), u+ and u are as in (3.2), and

X(v) {xlv(x) iw.

Proof. It is sufficient to prove the result for N:(v) . We abbreviate

P(v) to P and X(v) to X, let V(x) -v(x) -1 iW, and define

Q(t) - P(v + tu) - {xjv(x) + tu(x) > 0} , t > 0

Then
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- t ( +) IVt)- pQt

- f= (t) nP u JQ- \P (t) \P +t) tp\Q(t)

We consider these integrals one at a time, always taking fixed, but arbitrary,

representatives v, u of the equivalence classes [v],u] e E

i) First,

JQtn u ' J' u - JDt U, (4.4)Q(t) nP P (t)

where

D(t) - P\Q(t) - {x I V(x) > 0 , V(x) + tu(x) s 0)

so that u < 0 on D(t) Consequently, D(s) c D(t) for 0 < s S t, because

V(x) S slu(x) j implies that V(x) S tlu(x) l . For any x e P , define

t0(x) - V(x)/Iu(x)i > 0 then x e D(t) for t to (x) . Hence I1(t) 15 + 0
as t 0+ , and

u 5 1 D(t) 0  as t - 0+ (4.5)
JD(t) uO, 10/3,]R

(ii) Since

Q(t)\p - {x I V(x) + tu(x) 0, V(x) 5 01

we have u > 0 on Q(t)\P , and Q(t)\P - {xju(x) > 0, V(x) = 0) U R(t) , where

R(t) - {x I V(x) + tu(x) > 0 , V(x) < 01

Then IR(t) 5 4 0 as t - 0+, by the reasoning used for D(t) in (i), and

1 \ (V+tu) = J u + C V+tu) , (4.6)SQ(t)\P Jx + R(t)
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where

0 JS (V + tu) S ( u 0 a t 0+. (4.7)
t JR(t) R M)

(iL) The third integral in (4.3) is over D(t) , already considered in

i) , and

o V S J l + 0 as t 0+ . (4.8)0 s JP\Q (t) V(t)

Combining (4.4) to (4.8), we obtain the result of the lemma. Q.e.d.

Lema 4.2 shows that N is Gateaux differentiable at v in all directions

(that in, N+(v) - N_(v)) if and only if the set {xlv(x) = aM) has measure

zero.

The subdifferential of N at any point v e E is the set

aN(v) - {g* c B* q g*(u-v) S N(U) -Nv) for all u e E)

in the dual space E* of 9 . The following is another standard result

([16), p.122).

LEM A 4.3. At any point v C E , a bounded linear functional g* c N(v)

if and only if

N'(v)u S g*(u) 5 N(v)u for all u c E

We now consider the restriction NIE - Nc , say. (The subscript c isc

redundant in some statements, but helpful in others.) It is clear that Nc

enjoys the same properties relative to E as N does relative to E . Thec

following lemma provides a generalization of the usual Euler-Lagrange equation,

in weak form, characterizing a local maximum.
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LEIU4A 4.4. Let v be a local maximizer of Nc on the sphere S c(n)

(that is, v e S (n) and N (u) S N (v) for all u e S (N) in some

neighbourhood of v)

If V f aNcV) , then ga = UvE for some a > 0

Proof. There exists a unique element g c Ec such that g* = <g''>E and

g has a unique decomposition g - av + w, where a e R, w e (span (v})I and
I

()I denotes the orthogonal coplement in E c We prove that w = 0c

Assume the contrary, and define

w - w/lw1ll, u, - coS)v + CsinB) niw (4.9)

so that IIIu,1112 _ n and 11u- vIl 2 - 2n(1 -cosB) Since v is a local

maximizer, we may suppose that 0 # 0 and that N c(U) N c(V) whenever I01

is sufficiently small. By the definition of N C(v)c

0 2 N c(U) - N (V) > <g,u -v> E

= <av+w, (cosB- 1)v + (sin )n > E

- a (cos - 1) n + (sin$) n, 1lwlIl ,

and this is a contradiction for B > 0 and sufficiently small.

To prove that a 0 , we let w be any element of (span {v}) \{01} , not

related to g, and again define uB by (4.9). Then

O N c(u) - N (V) 2 <av, u -v> E  = a(cosO -1)n,

which shows that a 2 0 .

Finally, suppose that a = 0 . Then 0 c N C(v) , so that N C(v) S N C(u)C C C

for all u C E c; choosing u = 0, we obtain N Cv) = 0 . Hence N C(u) = 0c cc

for all u c S (n) sufficiently near v, and, since N (0) = 0 and N is
c c c
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non-negativ, and convex, we have N (u) - 0 in the cone
C

K8  . {u f Ec I 0 - IIuIIl2 s Ii, II).%-VIII < 8) C,. u/lllulll)

for some 6 0. This can be shown false I we set u - (v + w), choose

a point (r 0 ,z 0 ) e n outside the set ((r,z) Iv(r,z) S - 1) for som

representative v of Ev] c z c , and choose w as follows: llw III is so

small that u c Ka , but w(r,z) - - as (r,z) - (r 0 ,z0 ) . (For example,

w could be /r 2 times the function in (3.4) of [12).) Then u e K8 but

W (u) > 0 . Q.e.d.C

THEOIM 4.5. Let v be a local maximizer of N on S C(T . Then v

is a transformed weak solution of Hill's problem; in fact,

J Vu Vv dx - - J d for all u 4E, (4.10)t5 VuV =a JPWv

where a is as in Lemia 4.4.

Proof. Combining the results of Lemmas 4.2, 4.3 and 4.4, we obtain

P Iv) X (v) U S VuVv !5JPv) + JX (v)4.1

for all u e 2 c Define P0 (v) = P(v) U X(v) - {xlv(x) a W) , and note that

our bound (2.4) for IP(v) I5 applies equally well to P0 (v) . Also, u+ C E

when u C 3, with ltu+t111 S llulll , and similarly for u . Therefore, we may

first use Lema 2.3 to extend (4.11) to all u c E (just as in the proof of

Theorem 2.4) , and then repeat the proof of Lemma 3.1; the bounds implied by

(4.11) are as adequate as were those implied by (3.1). In particular, the

previous arguments show that - aAv(x) - 1 in P(v) , that Av(x) - 0 wherever

v(x) < 'iW, and that P0 (v) is boundedi hence
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-P '(v) for all #cC) 0 CO

But v(x) is constant almost everywhere on X(v) ; then two applications, first

to Vv and then to Av, of a known theorem ([19), p.53) show that Av(x) - 0

almost everywhere on X(v) . Thus

V#.Vv # * for all # c 1 5
a P (v)

and we extend this result by continuity to obtain (4.10). Q.e.d.

Remark. One can also show that if w is a local minimizer of N on

S (n) , then N(w) - 0 , so that w(x) : 1W almost everywhere.
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Appendix A. Extension to weak solutions of a theorem of

Gidas, Ni and Nirenberg

The theorem in question is Theorem 2.1 of [14). As well as giving a

slight extension, we correct an oversight: that the caps Z(u) and reflected

caps Y(ij) , defined in (ii) below, need not be connected, so that the maximum

principle can be applied only to components of such caps. The geometrical and

analytical setting is as follows.

(i) Let 0 be a bounded, connected, open set in ,n , with smooth

boundary 30 ; of class C is sufficient for Lemmas A.1 and A.2. For

Theorem A.3, however, we assume that 3A is of class C 2+  for some a (0,1)

which we may take to be the same H81der exponent for 3R and for the data

mentioned after (A.2). (In fact, only 30 n {xlx 1 > m-) , where m is

24agdefined below and c > 0 , need be of class C +
. ) The outward unit normal

to 31 is denoted by v " (v I .... n) 

(ii) Let T and xU be as in (3.11), except that xn  replaces x.

but now define a cap by Z(U) - {x e Oix I > 0} and the reflected cap by

Y(N) - {x e Mn Ix U Z(u)} . Note that our earlier definitions result from

replacing A by Pn , but that now Z(u) need not be connected. Indeed,

Z(C) may have infinitely many components (maximal connected subsets) even when

30 is of class C . We define critical positions of the reflecting hyperplane

T by

M - sup{xlx e 0) - sup{UlZ(v) is not empty)

k - inf{aul C (n,M) y() c Q) ,

I - inf({lu e (0,M) v Ix) > 0 for all x e 3Z(u)\T }

m - max{k,tL .

Figure 2 illustrates this notation. The following lemma states facts needed

for Theorem A.3, and shows that it is consistent with remarks in [141 to call
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Z(m) the maximal cap, and to call Z(k) , when k L, the optimal cap.

The proof of the lemma is omitted. (In [24) and [14), such results are

regarded as self-evident; our proof is not difficult, but it is not short.)

IZMM A.1. (a) There exists a number 6 > 0 such that, for any

( CM-8,N), we have Y(C) c Q and vx) > 0 for all x e ZU)\T

hence k < M and I < N

(b) Y k) c 0 .

(c) VI(x) > 0 for all x e 3Z(L)\T L

(d) For any ' > a, the boundaries aY(tO \T and 3U are disjoint.

(e) If k > I , then aY(k) \Tk  meets 3 tangentially at some point

(and FikTc A).

(f) There exists a point xO e TLn a such that v 1 (x - 0.

Note that, if i c pc ,M) , then Y() c U and v > 0 on BZ(u)\T The

condition k > I in (e) is necessary.

(iii) We consider a function u c C (f} , with u > 0 in U, such that

a V#.Vu-$ blx)DIu] dx = J glu) dx for all # e C0 (a) , (A.1)

u 0 on r m (A.2)

where D1 - a/ax1  and r = .3Z()\T . We also assume that u e C24 (r -C)

for some c > 0 ; that the coefficient b 1 C0 (5) and that b 1 0 on

Y(m) u Z~m) . The function g : [0,-) - IR is assumed to have a decomposition

g - g1 + g2 such that g e C [0,') , while g2 is non-decreasing and its

restriction to [0,0) is in C0+0,B) for some 0 > 0 .

LEMMA A.2. Let U be as in (i), and u as in (iii). Assume that, for

some u e [m,U) and for some component Y0C'M of Y() , we have u(x) 2 u(xu)
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for all x c Y0 (u), u(x) u(x O ) for some x0 c YO() ,and D Su 0

for all x c Z0 (u) , where z 0 () is the reflection in T of Y0 (W Then

(a) u(x) > u(xu) for all x c Y0 ( ) ,

(b) D u(x) < 0 for all x E {OY 0(p) n Z )\0 .

Proof. Defining w = u - u, where F (x) - F(x ) for any function F,

we calculate as in the proof of Lemma 3.7. Let Y0 . Y 0 ( ) and Z0 = Z0(U)

Given * E CO(Y 0 ) , we first choose # as the test function in (A.U), transform

from Z0  to Yo then choose # itself as the test function, to obtain (in

place of (3.15))

J {V*.Vw - blD lW) = f 0{g(u ) - g(u) - (b + bl, )Dl u} (A.3)
Y0 Y0

for all f i CO(Y0

Now, g(u ) - gl(u) = c(x) (u - u) for some c e C(2) because g1 £ C1[0,-)

and g 2 (u ) < 92(u) because g 2  is non-decreasing and u < u in Y0 By

hypothesis, b I + b U 0 in YO F and DlU > 0 in Y0 * Hence

f { Vf-Vw - *blDlW - *cw} 5 0 for all * C CC(Y ) with * 0¥00

Since w I 0 in Yo I by hypothesis, we conclude from Theorem 3.4(a) that

w < 0 in Y . Given x C {aY n aZ0}\BZ , we define B =C((x0,1-R, x0) , R)

an hoe0 0 0 0 1- 0,
and choose R so small that B c Y0 Then, since u C1(() , Theorem 3.4(b)

shows that (Dlw) (x 0 ) > 0 ; finally, (D w) (x 0 ) = - 2(Dlu) (x 0 )  Q.e.d.

THEOREM A.3. (a) Let Q be as in Ci), and u as in (iii). For any
E (re,M) , we have u(x) > u(xu) for all x c Y() Also, D u(x) < 0 for

all x in the maximal cap Z(m) .

Cb) Suppose that (DlU) (x 0 ) = 0 at some x0 c Tm n J1 Let Z0 be

the component of Z(m) containing (x0 1 + £ , x") for sufficiently small
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S> 0, and let Y 0(m) be the reflection in T of Z0 (M) Then u is an

even function of x 1 - m , the set 5 = T 0 (M) u Z 0 (m) , and b I = 0 in £2.

Proof. The hypotheses in (iii) ensure existence of a set

Q26 = {x E Idist(x,r m) < 261 , with 6 > 0 , such that g 0 u C C0+a(526

Regularity theory ([2), pp. 667-8) now shows that u E C 2+(6) . Then the

proof of Lemma 2.1 in [14) stands, and Lemma A.2 replaces Lemma 2.2 of [141.

The remaining part of the proof is essentially as on pp. 218-219 of [14).

For the proof of (a), it is enough that Lemma A.2 refers to any component of

Y) . For the proof of (b), the implication of (a) that u(x) a u(xm ) for

all x Y 0 ( ) , the result Dlu < 0 in Z(m) , the hypothesis (DIU) (x 0 ) = 0

and Lemma A.2 imply that u(x) - u(xm) for all x e Y0 (m) (otherwise, Lemma

A.2(b) would be contradicted at x0 ) . Then, by continuity, u(x) = u(xm) = 0

for x e3Y0m)\T and so 3Y 0(m)\TM c 30 Since Q is connected,fo x€ ¥0m\T , n0s aY()T

-T C0(m) U Z0(m). To prove that b I = 0 in Q2, we apply (A.3) with u -- m

and T0 - T0 (m) , noting that (A.3) follows from (A.1) without additional

hypotheses. Since we now have w = u - u E 0 in Y0 (m) , (A.3) reduces to
m

J 0 (b I + b Im)D U = 0 for all * c C0 (Y0 (m))

TO(S)Hece 1 -10,ad 1

with D 1uM > 0 by (a), and b 1 0 , b I m  0 Hence b, and bM 0

in 0(m) Q.e.d.

Appendix B. Hill's vortex in a ball

The problem has been formulated in remark (ii) of section 1.5; the cross-

section of the fluid domain is now D = {(r,z) e IlIr2 + z2 < b 2  . We denote

the analogue of Hill's solution by h ' and let p = r 2 + z ) as before;

an elementary calculation yields
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i Wr
2  

5 p

a p S a

(hr,z) Ih (r,z) + (Wr2 -a (B.la)
W2  3

p

where

3 Ab 2  
15 1

C= -- W 2/ (B. 1b)
b 3  c2 " 3 (Cl-c)

and
1 12  ( 2 2 23 c (1 + (B.,c)

*h DL( 2'',r +i ) zrdrdz . W2b - 7 T-c) B~c

Here the norm is that of the Hilbert space H(D) , which results from replacing

U by D in (1.7) and in the sentence preceding it. Obviously, *h H as

b + with a fixed.

Suppose that W and b are prescribed. Then (B. ,b) shows that X (c)

with 0 < c < 1 , has a single stationary point, a minimum at c = 2/5; we

define A - A(2/5) . Hence, if A is prescribed, we have no solution of

Hill's type for A < A0 , one solution for X = A0 , and two solutions for
>n. the other hand, the ener !' 112, as a function of c on

(0,1) , is strictly increasing and has range (0,-) ; prescription of this norm

always gives exactly one solution of Hill's type.

5
Let b be given and fixed henceforth, and let 12 = B(0,b) in m5. The

Hilbert spaces E (M) and E (0) are defined as E and E were, but with 9
c c

replacing 5 ; we make the same adjustment in the definition (2.2) of P(u)

The transformation of weak solutions, from H (D) to E () , proceeds essentially
c

as in section 2; perhaps a little more easily, because E(9) is equivalent to

W () (functions in E(U) are in L (Q) for 1 < p < 10/3) , and obviously2 p

JP(u) 5 s I1f25 • Thus a weak solution c H(D) of Hill's problem for D is
2

equivalent, under the transformation * = r v , to a function v c E (Q) satisfyingc

the hypothesis of the following theorem. We now weaken the condition v o Ec (52)

to v e EM()
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THEOREM R.1. If there exist v e E(MW)\{0 , A 4 I and W > 0 such that

Jn Vu-Vv dx A ( udx for all u e E(Q) , (B.2)

then v(x)- Vh lX'I ,x 5  and X Here v(r,z) =*h(r,z)/r2 and

-h is as in (B. 1) ; thus *h denotes a pair of functions for given X > X0

but with distinct values of 11 4 ih

Proof. In order to apply Theorem A.3 to v, we must first prove that

v C0(5) and that v > 0 in 0. Turning to Theorem 8.1 of [1, and

proceeding as in the proof of Lemma 3.1 (but now with estimates of 11v 112,p,)

we find that veC +Q(5) for every a e (0,1). Then v - 0 on 31 ;

Theorems 8.1 and 8.19 of (15] show that v > 0 in 2 . Alternatively, we can

proceed as in the proof of Lemma 3.2 to obtain

v(x) - X G(x,y) dy for all x c S,
• P(v)

where G is the Green function of the Dirichlet problem for -A in the ball 0

(it is minus the function on p.19 of [151). Classical estimates then show

that v e C for every a e (0,I) , and the positivity of v in 0

follows from that of G

5We now apply Theorem A.3 to the function v and the ball 0 in 3R

setting b1 = C), g1 . 0 and g 2 (t) - AfH(t - &zW) , where fH is as in (1.5);

the hypotheses are amply satisfied and the maximal cap is the half-ball in which

x I > 0. Therefore DI v(x) < 0 whenever x, > 0 and x e . Now choosing

the unit vector y = (-1,0,...,0) , we see that D v(x) > 0 whenever x1 < 0 and

x C 0. By continuity, D v = 0 on T n Q , and the theorem now states that
1 0

v is an even function of x1 . The same argument holds for every unit vector

5
y in R ; consequently, v depends only on lxI , and is strictly decreasing

as lx1 increases. The proof now concludes like that of Theorem 3.9. Q.e.d.
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The results in section 4 are not affected in any significant way when I5

is replaced by the ball 0 in i , and E by E(il) Let us denote by

N(u,Q) and S (n,fl) the results of these changes in the definitions (2.8)c

and (2.9). Then we have

THEOREM B.2. Let v be a local maximizer of N(*,f) on the sphere

S lN,) . Then v is a transformed weak solution of Hill's problem for D. c

that is, there exists A e 3 such that (B.2) holds.

Appendix C. Alternative proof of a lemma of Gidas, Ni

and Nirenberg

We are concerned here with Lemma 4.1 in [14], of which our Lemma 3.5 is a

particular case; the following proof is somewhat different from that in [14).

We let x- = (x2 .. ,x) , as elsewhere, but r now denotes spherical radius.

LEM 4A C.I. Assume that, outside some ball in Rn

v(x) = a0 r - m + g(x) , a0 > 0 , m > 0, r i lxI

where g(x) - 0 and IVg(x) I = o(r-m-3 ) as r - . Consider two points y

and z such that y, < z, P Y1 + z1 2 2p > 0 and y" - z- . There exists

a number R(p), depending only on v and min{,pj} , such that

v(y) > v(z) whenever IyI 2

Proof. There exist positive constants r0  and K such that, for r Z r0

IVg(x) I S a0Kr- 3 , (C.1)

dri aK --Igcx) l -s - r (C. 2)

m+2-40-
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We consider only points outside the ball 8(0,r 0 and introduce the notation

(Figure 3)

yl - a -h , ZI  a +h, cL k pi > 0 , h > 0,

a - Ivl - (*-h) 2 + ly#) I t 2 +

so that

t -s2  - 4ah, t > s k r0 . (C.3)

The result will follow from two estimates of Ig(y) - g(z) I and one of s-' - t -  •

Let P2 denote the two-dimensional plane containing the points 0 , y and

z (or any such plane if y" - 0) , and let r be the circular arc in P2 from

y to z , centred at (0,0) Then r has length 1rh at most, and

r - x • a for x e r , so that (C.1) yields

19(y) -g(zfl 
t jr Vg(x).dx~ 1 :5 ha 0 Ks- (C.4)

Alternatively, by (C.2),

2a 0K -m-2

19g(Y) - g(z) 1 19 g(Y) I + 19 (z) I s C5

For our third estimate, we first note that

t' - s k c t" (t-s) , where c = min{m,l} ; (C.6)
m m

if m e (0,1) , this is true because I - > m(1 - &) for 0 ! I

(differentiate both sides), and, if m > I , because s m < t-1s . Accordingly,

in view of (C.3),
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ct t-u) t (c 4h

amt
m  mt

m  m t t + 

2c bh 2c mh

5 m( + 4e, h)

2
If 4ah < a , we use (C.7) and (C.4) to obtain

a {v(y) - v(z)} -m - t-m + I {g(y) - g(z)
ac0  a0

-, irKh wrK
- 0 if s8

m+2 m+3 c a

2
If 4h k a , we use C.7) and (C.5) to obtain

C 2 SK
. {v y) - v(z) > I. -2 1 if

a0  m m +2 2 (m2)

We define

R (U) " - o' cnin{1.jI ' (rCm+ O

and the le2ma is proved. Q.e.d.

Remarks. (i) If the hypothesis lVg(x) = Or - m- 3) as r is

weakened to iVg(x) I - O(r - -2 ~6) , 6 > 0, then an obvious variant of the

foregoing proof still holds; if it is weakened to IVg(x) = o~r- M 2 ) , then

a proof is still possible, but explicit calculation of R() must be replaced

by an 'epsilon argument'.

(ii) In [14), the lemma is stated for m > 0 (in Theorem 4, p.211), but

proved (on pp. 232-234) only for m 2! 1; however, (C.6) shows that this is a

small matter.
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